Gene and pathway analysis of GWAS data

Christiaan de Leeuw Miaoxin Li

Session

- Theoretical overview
 - Gene analysis
 - Pathway/gene-set analysis

MAGMA practical

- Gene analysis
- (generalized) gene-set analysis
- KGG practical
 - Gene analysis
 - Gene-gene pair analysis in PPI networks

Gene analysis - overview

- Joint analysis of (common) variants in a gene
- Goal: localization of associations on the genome
- Pro
 - Reduce multiple testing (from up to 2.5M SNPs to around 20K genes)
 - Better power (potentially)
 - Aggregate weak individual effects to detectable signal
 - Detect haplotype effects
- Con
 - Disregards non-genic variation
 - Large sample sizes still required

- Numerous methods: MAGMA, KGG, VEGAS, PLINK (/PLINK2), ...
- SNP aggregation vs multi-marker model
- SNP aggregation approach
 - Generate p-values per SNP, then aggregate into gene statistic
 - Gene statistic: mean SNP χ^2 , top SNP χ^2
 - Only requires SNP p-values (and reference data, eg. 1,000 Genomes)
 - Often requires permutation to obtain gene p-value
 - Computationally expensive, uncertainty in p-value
 - Cannot detect haplotype effects

- Numerous methods: MAGMA, KGG, VEGAS, PLINK (/PLINK2), ...
- SNP aggregation vs multi-marker model
- Multi-marker model approach
 - Linear or logistic regression with all SNPs in gene as predictors
 - Omnibus test: F-test, likelihood ratio test
 - Requires raw data, doesn't require permutation
 - Can detect haplotype effects
 - Easier to include covariates and interaction terms
- Methods tend to converge as sample size increases

Gene analysis - general issues

• Annotation window

- Use nearby markers beyond transcription start/stop sites?
- Recommendation: use very small or no window, or determine on gene-by-gene basis (eg. using eQTL data)

• Population stratification

- More susceptible than single marker analysis
- Recommendation: include (at least) 10 principal components

Gene-set analysis - overview

- Joint analysis of functionally/biologically related genes
 - Pathway = gene set, no internal structure
- Pro
 - Can aggregate multiple weakly associated genes into detectable signal
 - Leverage outside information to provide biological insight into phenotype
 - Shift in research question from "where are phenotype associations located on genome" to "which functional/biological properties and processes are relevant to the phenotype"

Gene-set analysis - overview

- Joint analysis of functionally/biologically related genes
 - Pathway = gene set, no internal structure
- Con
 - Difficult to determine which gene sets to test
 - Public database vs expert curated
 - Database-wide analysis vs specific hypotheses
 - Uncertainty in interpretation of results
 - Large sample sizes still required

- Self-contained analysis
 - PLINK, KGG-HYST, MAGMA, JAG, SETSCREEN, GenGen, ...
- Competitive analysis
 - MAGMA, KGG-hyper, JAG, INRICH, MAGENTA, ALIGATOR, FORGE, GSEA, ...

• Different hypotheses

- Self-contained: are genes in the gene set (on average) associated with the phenotype?
- Competitive: are genes in the gene set (on average) more strongly associated with the phenotype than other genes?

• Compare eg. medical research

- Self-contained: does the health of patients taking drug X improve?
- Competitive: does the health of patients taking drug X improve more than that of control patients?
- Self-contained analysis does not correct for background association
 - Gene-set p-values decrease as function of
 - Gene-set size
 - Degree of polygenicity and heritability
 - Strong association does not imply substantive relation to phenotype

- Self-contained analysis
 Point, Non-Trist, IVIAGIVIA, JAG, SELECEEN, GenGen, ...
- Competitive analysis
 - MAGMA, KGG-hyper, JAG, INRICH, MAGENTA, ALIGATOR, FORGE, GSEA, ...

- Competitive analysis
 - MAGMA, KGG-hyper, JAG, INRICH, MAGENTA, ALIGATOR, FORGE, GSEA, ...

• Competitive analysis

• MAGMA, KGG-hyper, JAG, INRICH, MAGENTA, ALIGATOR, FORGE, GSEA, ...

• However...

- Type 1 error rates for many competitive methods not well controlled
 - Error rates are controlled averaged over many gene sets, but not always at individual gene set level

Individual gene-set type 1 error rates

MAGMA competitive analysis

"Well-controlled"

Individual gene-set type 1 error rates

Unnamed gene-set analysis method

"Not well-controlled"

Mean type 1 error rate at alpha of 5% is 0.051

• Competitive analysis

• MAGMA, KGG-hyper, JAG, INRICH, MAGENTA, ALIGATOR, FORGE, GSEA, ...

• However...

- Type 1 error rates for many competitive methods not well controlled
 - Error rates are controlled averaged over many gene sets, but not always at individual gene set level

Recommendation

- MAGMA
- INRICH (with higher SNP p-value cut-off, eg. 1st percentile of SNP p-values)

Gene-set analysis - general issues

• Gene analysis issues

Annotation window, population stratification

• Interpretation

- Interpretation is relative to how association between genes and phenotype is defined
- Interpretation is dependent on the quality of the gene set itself
 - 'Measurement uncertainty'
- Confounding

Gene-set analysis - confounding

- AKA: correlation does not imply causation
- Suppose gene set A is truly associated with the phenotype:
 - Any other gene set that has overlap with A may show a spurious association
- Partial solution: conditional gene-set analysis (MAGMA only)
 - Compute gene-set association conditioned on other gene sets or gene properties
 - Compare: principal components for population stratification
 - Only works if A is among the gene sets being tested

Practical

MAGMA

Goals

- Fast & user-friendly
- Robust gene and gene-set analysis
- Platform to include more biological information in genetic analysis
- Program
 - C++, Command-line interface
 - Binary PLINK data input

MAGMA

• Gene analysis model

- Raw data: principal components regression + F-test
 - Rare variants: burden score
 - Optional GxE interaction component
- SNP p-values: mean / top χ^2 statistic

• Gene-set analysis model

- Based on gene analysis output
- Linear regression model, genes as observations / rows in data matrix
 - Gene-sets as predictor of association in genes
- Self contained analysis, (conditional) competitive analysis, gene property analysis

Practical

- 1. Annotate SNPs to genes
- 2. Perform gene analysis (with 10 PCs as covariates)
- 3. Perform gene-set analysis
- 4. Perform conditional gene-set analysis with confounding gene-set

• Data

- Simulated GWAS data and phenotype; 400K SNPs, N = 2,500
- 1011 Reactome gene sets

Practical

- Open terminal window
- Copy practical files to local drive and move to new folder
 - cp -R /faculty/christiaan/Boulder\ 2015/magma_practical .
 - cd magma_practical
- Folder should contain
 - GWAS data: boulder.bim, boulder.bed, boulder.fam
 - Covariate file: boulder_pca.cov
 - Gene-set file: reactome.sets
 - Gene definition file: NCBI37.3.gene.loc
 - Instructions: practical.pdf

Practical - key points

• Step 2: gene analysis

- 3 genes are genome-wide significant (thresh. = 0.0000038)
- Only 6.03% of genes have a p-value below 0.05
 - Modest polygenicity
- Step 3: gene-set analysis
 - Significant: 15 self-contained, 8 competitive
 - Despite only modest polygenicity in data
 - Gap is usually larger in practice
 - For first significant gene-set (SIGNALING_BY_NOTCH1_T)
 - Lowest gene p-value: 0.00034
 - 26.4% of genes have a p-value below 0.05

Practical - key points

• Step 4

- 5 out of 7 gene-sets are no longer significant after correcting for the confounder gene-set
- Conversely, the confounder set remains highly significant when conditioning on any of these 7 sets

	Self. P	Comp. P (step 3)	Comp. P (step 4)
Set 1	1.88e-12	3.79e-5	0.155
Set 2	1.12e-8	2.97e-5	2.6e-5
Set 3	4.02e-9	5.24e-8	0.077
Set 4	3.64e-14	2.07e-9	0.127
Set 5	7.94e-7	4.36e-6	0.736
Set 6	1.69e-9	3.57e-6	3.02e-6
Set 7	5.40e-15	6.87e-9	0.264